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ABSTRACT 

 

This theoretical report is pertinent to the mathematical problem of finding of all the possible eigenvectors for the four-

potential shear-horizontal surface acoustic wave (4P-SH-SAW) propagation in suitable solids. In this case, the wave 

propagation is coupled with the four potentials, i.e. the electrical, magnetic, gravitational, and cogravitational ones. The 

taking into account these four potentials results in significant difficulties to find any eigenvector because the 

mathematical method is significantly complicated. To find all suitable eigenvectors is very important here because it will 

allow one in the future to theoretically disclose all suitable solutions of acoustic waves. This is applicable to the problem 

of finding of propagation velocities of the SH-SAWs, interfacial SH-waves, plate SH-waves, and more complicated 

cases. It is thought that all the effects (for instance, the gravitocogravitic, gravitoelectric, cogravitoelectric, 

gravitomagnetic, cogravitomagnetic effects) individually or collaboratively participating in the acoustic wave 

propagation can be vital for acoustic wave propagation that can be readily used for constitution of suitable technical 

devices. This fact must be first demonstrated theoretically for experimentalists and engineers working with the 

transmitting, detecting, and converting of the electromagnetic waves’ signals. It is expected that the future 

communication technologies will also exploit gravitational waves for the new communication era based on some 

gravitational phenomena.   

 

PACS: 51.40.+p, 62.65.+k, 68.35.Gy, 68.35.Iv, 68.60.Bs, 74.25.Ld, 74.25.Ha, 75.20.En, 75.80.+q, 81.70.Cv, 96.20.Jz, 

04.30.-w, 04.90.+e, 95.30.Sf  

Keywords: transversely isotropic solids, gravitational effects, magnetoelectric effect, eigenvector problem, four 

potential coupling problem.  

 

 

INTRODUCTION  

 

2016 was the jubilee year, namely the centenary 

celebration of the prediction of the existence of 

gravitational waves. This prediction was done by Albert 

Einstein (1916). Also, 2016 is the year when Einstein’s 

prediction was experimentally confirmed by a team of 

more than thousand researchers (Abbott et al., 2016). 

They were working during several decades since 1970s 

for the purpose to detect the gravitational waves in space 

experiments called the LIGO (Laser Interferometer 

Gravitational-Wave Observatory). Using obtained data in 

the space experiments, they presented the first direct 

detection of gravitational waves and the first observation 

of a binary black hole merger. The black holes are famous 

invisible objects possessing very strong gravitational 

fields that are strong enough to capture even the 

electromagnetic waves propagating in a vacuum with the 

speed of light.  

André Füzfa (2016) has reported his experimental 

realization when the magnetic and gravitational forces can 

interact: the magnetic field can control the gravitational 

field. He has described one revolutionary approach for the 

creation of gravitational fields from well-controlled 

magnetic fields and observing how these magnetic fields 

can bend space-time. He has proposed a theoretical device 

based on superconducting electromagnets for creation of 

detectable gravitational fields. He has also evaluated the 

coupling between the magnetic and gravitational fields in 

an order of ~ 10
−35

. This leads to the generation of 

extremely weak gravitational redshift and gravitational 

attraction. Also, the atomic interferometry has been 

considered for the determination of the extremely faint 

change in the gravitational potential produced by small 

masses on matter waves. So, the amplitude of the extra 

gravitational acceleration artificially generated by the 

magnetic field of a single-layered solenoid is extremely 

weak but lies just a few orders of magnitude below the 

precision of atomic interferometry in the measurement of 

differential acceleration of 10
−15

 g. His pioneer work can Corresponding author e-mail:  aazaaz@inbox.ru 
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release many new applications concerning 

telecommunications with gravitational waves. The ability 

to produce, detect, and control gravitational fields can 

certainly be a major achievement in modern physics. 

Therefore, scientific interest in the problem of interactions 

between the gravitational and electromagnetic waves 

continuously increases.  

 

The author of this report (Zakharenko, 2016) has 

developed the original theory concerning the four-

potential shear-horizontal surface acoustic wave (4P-SH-

SAW) propagation, i.e. the waves coupled with the 

electrical, magnetic, gravitational, and cogravitational 

potentials. This means that all five fields (elastic, 

electrical, magnetic, gravitational, and cogravitational) 

contribute to the wave motion. There are also interactions 

among and between each pair of the mechanical, 

electrical, magnetic, gravitational, and cogravitational 

subsystems in the common thermodynamic system. 

Theoretical work (Zakharenko, 2016) treats two extra 

subsystems (gravitational and cogravitational) to the 

thermodynamic system for piezoelectromagnetics (PEMs) 

in which mechanical, electrical, and magnetic subsystem 

contribute. The piezoelectromagnetics are a class of well-

known magnetoelectric materials. The SH-SAW 

propagation coupled with the electrical and magnetic 

potentials in the 6 mm PEMs represented a great interest 

in the last decade. The transversely-isotropic 6 mm 

materials and suitable propagation directions (Gulyaev, 

1998) for the acoustic waves are well known. There is 

single review (Zakharenko, 2013a) on the PEM-SH-

SAWs and the disclosed peculiarities for the problem of 

the wave propagation are discussed in (Zakharenko, 

2013b). There is also single book (Zakharenko, 2010) on 

some new PEM-SH-SAWs. The book was published in 

2010 under the influence of the discoveries done by 

Melkumyan (2007). Some extra new PEM-SH-SAWs 

were recently discovered in (Zakharenko, 2013c) and 

(Zakharenko, 2015a) and some of the new waves were 

analytically studied in (Zakharenko, 2015b). It worth 

noting that Melkumyan (2007) has also discovered the 

new PEM-SH-SAW called the surface Bleustein-

Gulyaev-Melkumyan wave in order to have an analogy 

with the surface Bleustein-Gulyaev wave. The later SH-

SAW can propagate in pure piezoelectrics or pure 

piezomagnetics and was simultaneously discovered by 

Bleustein (1968) and Gulyaev (1969).  

 

The wave propagation studied in (Zakharenko, 2016) is 

caused by the contribution of the following five fields: the 

elastic, electric, magnetic, gravitational, and 

cogravitational. The last two fields are respectively 

known as the gravitoelectric and gravitomagnetic ones in 

the theory of the gravitoelectromagnetism. Paper 

(Zakharenko, 2016) uses gravitational and cogravitational 

instead of gravitoelectric and gravitomagnetic because the 

last two words are naturally used for the corresponding 

exchange effects between the gravitational and electric 

(magnetic) subsystems, respectively. In this introductory 

part, it is possible to briefly review some studies on the 

cogravitational (gravitomagnetic) field because this field 

of five can be the most infamous for the reader.  

 

Researchers specializing in general relativity, 

gravitational theories, and cosmology have formed the 

existence necessity of a magnetic-like gravitational field 

unknown in other domains of physics. Heaviside (1893) 

has first hypothesized the existence of the cogravitational 

(gravitomagnetic) field. This extra field predicted by 

general relativity was first formulated in Thirring (1918), 

Lense and Thirring (1918) and Thirring (1921). The 

translation of these papers was introduced by Mashhoon 

et al. (1984). Forward (1961) has first expressed the 

gravitational field equations (with the gravitomagnetic 

field called the prorotational field) in a vector form 

directly analogous and nearly identical to Maxwell’s 

equations for electromagnetism. DeWitt (1966) has first 

identified the significance of gravitational effects in a 

superconductor and demonstrated that a magnetic-type 

gravitational field must result in the presence of fluxoid 

quantization. Ross (1983) has substantially expanded 

DeWitt's work.  

 

In the early 1970s, Wallace has issued three patents 

(Wallace, 1971a; Wallace, 1971b; Wallace, 1974) for 

some unusual inventions relating to the gravitational field. 

He has also developed an experimental apparatus for 

generating and detecting a secondary gravitational field 

called the kinemassic field, i.e. the gravitomagnetic field. 
He has here described three different methods used for 

detection of the gravitomagnetic field: (1) change in the 

motion of a body on a pivot, (2) detection of a transverse 

voltage in a semiconductor crystal, and (3) a change in the 

specific heat of a crystal having spin-aligned nuclei. Also, 

he has shown an analogy between the un-paired angular 

momentum in some materials (elements and isotopes 

possessing an odd number of nucleons) and the un-paired 

magnetic moments of electrons in ferromagnetics. 

Wallace believed that a gravitational shield can be 

created: the gravitomagnetic field can create a secondary 

gravitoelectric field leading to exclusion of an existing 

primary background gravitoelectric field. However, these 

detected gravitational shielding effects are extremely 

small.  

 

There is gravitational theoreticians’ bible (Misner et al., 

1973). This book presents gravitational field equations 

derived from general relativity in a form similar to 

Maxwell’s equations along with many other theories. It is 

necessary to state that the Maxwell-like equations for 

gravitation are relatively simple and can have possible 

practical applications. Therefore, these equations must be 

perfectly described in any undergraduate physics textbook 

that is currently missing. Braginsky et al. (1977) have 
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written down gravitational field equations (with the 

gravitomagnetic field called the magnetic-type gravity) 

derived from the general relativity theory in a form 

similar to Maxwell’s equations. A variety of experiments 

are proposed and analyzed for detecting the 

gravitomagnetic field. His further collaborative paper 

(Braginsky et al., 1984) analyses an experiment for 

detecting the earth's gravitomagnetic field. It is possible 

that the authors of papers (Braginsky et al., 1977; 

Braginsky et al., 1984) are the first who have utilized the 

terms “gravitoelectric” and “gravitomagnetic”.  

 

Bedford and Krumm (1985) have also derived the 

necessary existence of the gravitomagnetic field from 

arguments based on special relativity. Krumm and 

Bedford (1987) have also derived the gravitational 

Poynting vector and used the terms “gravinetic” and 

“gravistatic” for the gravitational fields. One year later, 

Kolbenstvedt (1988) has exploited the terms 

“gravielectric” and “gravimagnetic” for these fields and 

predicted the gravitomagnetic field existence using 

special relativity and time dilation. In the following year, 

Mashhoon et al. (1989) have provided a summary 

analysis of Maxwell’s equations for gravitation and an in-

depth analysis of the Gravity Probe-B orbital gyroscope 

experiment for detecting the earth's gravitomagnetic field. 

Harris (1991) has also composed Maxwell’s equations for 

gravitation from general relativity in the case of 

nonrelativistic velocities and relatively weak field 

strengths.  

 

In the book published by Jefimenko (1992), the 

electromagnetic field equations based on retarded sources 

(charges, moving charges, and accelerating charges) were 
derived and similar arguments to the gravitational field 

equations were applied. He also presents Maxwell’s 

equations for gravitation and an unusual mass 

configuration relevant to an effect of change in gravity. 

Ciufolini and Wheeler (1995) have developed the 

electromagnetic analog of the gravitational field equations 

and provided an in-depth analysis of experiments for 

detecting the gravitomagnetic field. So, researchers 

(Misner et al., 1973; Braginsky et al., 1977; Braginsky et 

al., 1984; Bedford, and Krumm, 1985; Krumm and 

Bedford, 1987; Kolbenstvedt, 1988; Mashhoon et al., 

1989; Harris, 1991; Jefimenko, 1992; Ciufolini and 

Wheeler, 1995) have demonstrated the necessary 

existence of the gravitomagnetic field, using arguments 

based on general relativity, special relativity, and the 

cause and effect relationship resulting from 

noninstantaneous propagation of energy (retardation).  

 

Li and Torr (1991) have also presented Maxwell's 

equations for gravitation in a form where the 

gravitomagnetic permeability of a superconductor is 

different from the permeability of a vacuum (free space). 

They have derived an interrelationship between the 

magnetic and gravitomagnetic fields in a superconductor 

and established that an electrical current also results in a 

mass current. It is also found that the magnetic flux in a 

superconductor is a function of the gravitomagnetic 

permeability, and vice versa, and shown that the 

magnetically created gravitomagnetic field in a 

superconductor can be ~ 10
11

 times larger than the 

internal magnetic field. One year later, Li and Torr (1992) 

have discussed the interrelationship between the magnetic 

and cogravitational (gravitomagnetic) fields in 

superconductors, in which some spin alignment of the 

lattice ions can cause the later field. They have also 

estimated the propagation velocity of a gravitational wave 

in a superconductor: it is two orders of magnitude slower 

than the vacuum velocity. This allowed them to perform 

an estimation of the value of relative gravitomagnetic 

permeability of a superconductor: it is ~ 10,000 times 

larger than that for a vacuum. In the following year, Torr 

and Li (1993) have continued their analysis of 

gravitational effects in superconductors and shown a 

striking similarity to Wallace’s ideas that the coherent 

alignment of lattice ion spins can generate detectable 

gravitomagnetic and gravitoelectric fields. Li et al. (1997) 

have described an experiment showing that the effect of 

change in gravity was very small, if it existed at all. In 

1999, Li has left the University of Alabama and found her 

company AC Gravity LLC that remained listed as an 

"existent" business in 2014.  

 

Nordtvedt (1988) has reported an indirect detection of the 

gravitomagnetic field by astronomical observations of the 

precession rate of the binary pulsar PSR 1913+16. 

Ciufolini et al. (1997) have reported that the 

gravitomagnetic field resulting from the earth's rotation 

was experimentally detected and measured by laser 

tracking of the LAGEOS II satellite. Their results agreed 

with the Lense-Thirring derivation from the general 

relativity theory. Ciufolini et al. (1998) have also reported 

a test of general relativity and measurement of the Lense-

Thirring effect with two Earth satellites.  

 

With a bulk YBa2Cu3O7-x superconductor, Podkletnov and 

Nieminen (1992) have described a possibility of 

gravitational force shielding when a 2% reduction in 

weight can be achieved in a mass suspended over a 

levitated and rotating toroidal-shaped type II 

superconductor disk. With the Meissner effect, constant 

vertical and time varying horizontal magnetic fields were 

applied for rapid rotation of the disk. Podkletnov's 

"gravity shielding" experiment at Tampere was replicated 

by the NASA and may also be an example of the effect 

described in Wallace's patents of the early 1970s claiming 

that a rotating object containing unpaired nuclear spins 

can modify gravity. It is a pleasure that an explanation in 

terms of a gravitational analogue to the magnetic field of 

electromagnetism is used.  
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Using the brief review written above, the reader is already 

familiar with the cogravitational (gravitomagnetic) field 

and different studies on the field. Therefore, it is possible 

to return to the problem of the acoustic wave propagation 

coupled with the four potentials (electric, magnetic, 

gravitational, and cogravitational). This theoretical report 

represents a complement to the previously published work 

Zakharenko (2016). Namely, it touches the very important 

mathematical problem of finding of the apt eigenvectors. 

To find all the possible eigenvectors is crucial because the 

utilization of different eigenvectors in coupe with 

different electrical, magnetic, gravitational, and 

cogravitational boundary conditions can lead to different 

formulas for calculation of propagation velocities of the 

acoustic wave. For instance, the four-potential shear-

horizontal surface acoustic waves (4P-SH-SAWs) are the 

simplest example for the case. These 4P-SH-SAWs 

represent different mechanisms of instability of the 

corresponding bulk acoustic wave, i.e. 4P-SH-BAW. 

These different instability mechanisms can be caused 

even by extremely small exchange effects, for instance, 

the magnetoelectric, gravitocogravitic, gravitoelectric, 

cogravitoelectric, gravitomagnetic, and cogravitomagnetic 

effects. These effects represent an exchange between two 

corresponding subsystems of four: electric, magnetic, 

gravitational, and cogravitational.  

 

This is possible that extremely weak effects can 

contribute in wave existence in a major way because the 

very weak magnetoelectric effect can be vital for the 

some acoustic wave propagation in piezoelectromagnetics 

(Zakharenko, 2010) in which the mechanical, electric, and 

magnetic subsystems interact. Therefore, let’s resolve this 

mathematical problem concerning the finding of all 

possible eigenvectors. This represents a quite complicated 

mathematical task that will be demonstrated in the 

following sections.  

 

 

The theory and the problem of finding of eigenvalues 

and eigenvectors  

 

For the problem of acoustic wave propagation in solids, it 

is first necessary to resolve the equations of motion. This 

means that all suitable eigenvalues and corresponding 

eigenvectors must be disclosed. To resolve the equations 

of motion is a complicated task for the common case, for 

which they can be resolved only numerically. In the 

common case, the coupled equations of motion are written 

down in a tensor form representing the following compact 

form of the well-known Green-Christoffel equation 

(Zakharenko, 2016):   00  IphIJIJ UVGL  , where 

the indices I and J run from 1 to 7 and ρ is the mass 

density. The phase velocity defined by kVph   is 

proportional to the angular frequency ω and inversely 

proportional to the wavenumber k in the propagation 

direction. GLIJ stands for the components of the modified 

symmetric tensor (Zakharenko, 2016) and δIJ represents 

the Kronecker delta-function with the following 

conditions: δIJ = 1 for I = J < 4, δIJ = 0 for I ≠ J, and δ44 = 

δ55 = δ66 = δ77 = 0. Also, parameters UI
0
 represent the 

components of the eigenvector  0

7

0

6

0

5

0

4

0

3

0

2

0

1 ,,,,,, UUUUUUU . 

This compact tensor form of the coupled equations of 

motion represents the common problem for determination 

of the eigenvalues and eigenvectors.  

 

However there are particular cases depending on the 

material symmetry and propagation directions when 

analytical solutions can be obtained. For the acoustic 

wave propagation in the transversely isotropic (6 mm) 

materials, the suitable propagation directions (Gulyaev, 

1998; Dieulesaint and Royer, 1980; Auld, 1990) exist in 

many directions perpendicular to the sixfold symmetry 

axis. For this case, both the coupled equations of motion 

and the boundary conditions’ determinant split into two 

independent parts. This allows one to separately study 

these two parts. The first part is for the case of the 

propagation of the purely mechanical wave, for instance, 

the surface Rayleigh type waves (Dieulesaint and Royer, 

1980; Auld, 1990; Zakharenko, 2005). These acoustic 

waves with the in-plane polarization are famous and this 

work has no interest in their study. The second part is 

relevant to the propagation of the shear-horizontal (SH) 

acoustic wave with the anti-plane polarization. This case 

represents a great interest because the SH-wave 

propagation is couple with the electrical, magnetic, 

gravitational, and cogravitational potentials. This case 

was originally studied by Zakharenko (2016). To further 

develop the study by Zakharenko (2016), it is necessary to 

demonstrate all possible eigenvectors because each of 

them can lead to unique solution or the propagation 

velocity of the SH-wave.  

 

Therefore, let’s start to resolve the coupled equations of 

motion written down in the following tensor form 

(Zakharenko, 2016) for the case of the SH-wave 

propagation in the transversely isotropic (6 mm) 

materials:  
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Table 1 lists all the material parameters present in 

equations (1). The values of the material parameters must 

be unique for each solid continuum. There is no necessity 

in this study to write down the values of the material 

parameters for a particular material. However, it is 

possible to provide the well-known vacuum material 

parameters listed in Table 2.  

 

Table 1. The material parameters’ dimensions.  

 

Material parameter  Symbol  Dimension  

Mass density  ρ kg/m3  

Elastic stiffness constant  C N/m2  

Piezoelectric constant  e C/m2  

Piezomagnetic coefficient  h T = N/(A×m)  

Piezogravitic constant  g kg/m2  

Piezocogravitic coefficient  f rad/s  

Electric constant  ε F/m  

Magnetic constant  μ N×s2/C2  

Electromagnetic constant  α N×s/(V×C)  

Gravitic constant  γ kg2/(N×m2)  

Cogravitic constant  ε m/kg  

Gravitocogravitic constant  ϑ s/m  

Gravitoelectric constant  δ C×kg/(J×m)  

Cogravitoelectric constant  ξ m/Wb  

Gravitomagnetic constant  β T×kg×m/J  

Cogravitomagnetic constant  λ T×m3/(C×Wb)  

 

Table 2. The vacuum parameters (Yavorsky et al., 2006), 

where the value of the vacuum elastic constant was 

borrowed from work by Kiang and Tong (2010).  

 
Vacuum parameter  Value  

Elastic constant  C0 = 0.001 [N/m2]  

Electric constant (dielectric 

permittivity constant)  

ε0 = 0.08854187817 × 10–10 

[F/m]  

Magnetic constant (magnetic 
permeability constant)  

μ0 = 1.25663706144 × 10–6 
[H/m]  

Gravitic constant (gravitoelectric 

permittivity coefficient)  

γ0 = 1.498334 × 1010 

[kg×s2/m3]  

Cogravitic constant 
(gravitomagnetic permeability 

coefficient)  

ε0 = 0.0742592 × 10–26 
[m/kg]  

Newtonian gravitational 

(gravitoelectric) constant  

G0 = 1/γ0 = 0.667408 × 10–10 

[m3/(kg×s2)]  

Cogravitational 

(gravitomagnetic) constant  

M0 = 1/ε0 = 13.46635 × 1026 

[kg/m]  

Speed of light  CL = (G0M0)
1/2 = (γ0ε0)

–1/2  
= (ε0μ0)

–1/2 = 2.997924 × 108 

[m/s]  

 

This set (1) of five homogeneous equations allows one to 

determine all the eigenvalues n3. With each of the found 

eigenvalues, it is possible to obtain the corresponding 

eigenvector  00000 ,,,, ΨΦU  . The suitable 

eigenvalues n3 can be found when the determinant of the 

coefficient matrix in equations (1) is equal to zero. This 

determinant can be composed in the following convenient 

form consisting of five cofactors:  
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Therefore, these five factors in equation (2) give the 

following five pairs of the eigenvalues:  
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In equations (3) and (4), j = (– 1)
1/2

 is the imaginary unity. 

Also, expression (4) introduces the velocity (Vtemgc) of the 

shear-horizontal bulk acoustic wave (SH-BAW) coupled 

with the electrical, magnetic, gravitational, and 

cogravitational potentials, i.e. the 4P-SH-BAW speed. It 

is defined by  

 

  21 emgctemgc KCV        (5) 

 

In definition (5), 
2

emgcK  defines the coefficient of the 

electromagnetogravitocogravitomechanical coupling 

(CEMGCMC). Its value can be calculated with the 

following formula:  
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Thus, all the possible eigenvalues, namely the five pairs 

defined by expressions (3) and (4) are already obtained. 

Each found eigenvalue n3 must be now used in equation 

(1) anew to determine the corresponding eigenvector 

 00000 ,,,, ΨΦU  . It is obvious that each of two 

eigenvalues in each pair of five provides the same 

eigenvector because equations (1) depend on n3
2
. Also, 

four pairs (3) are identical and therefore, they must give 

the same set of the eigenvector components. Fifth pair (4) 

can certainly provide a unique set of the eigenvector 

components different from those for eigenvalues (3). So, 

only two eigenvectors must be found: the first will 

correspond to each of eight eigenvalues (3) and the 

second will correspond to the last pair of eigenvalues (4). 

Probably, this peculiarity can significantly simplify the 

problem. The second peculiarity is the situation that any 

of the eigenvector components does not depend on the 

phase velocity Vph. The reader can check this statement by 

using the final expressions for the eigenvector 

components obtained in the following six sections. It is 

worth noting that this second peculiarity exists only for 

the transversely isotropic (6 mm) materials and results in 

many possible solutions for the propagating velocity. A 

great interest represents to find some solutions with a 

dramatic dependence on (one of) the following extremely 

weak exchange effects: the gravitocogravitic, 

gravitoelectric, cogravitoelectric, gravitomagnetic, and 

cogravitomagnetic effects.  

 

With equations (1), it is natural first to obtain common 

forms of the eigenvector components. Utilizing 

eigenvalue (3) or (4), these common forms will then give 

certain eigenvector components  00000 ,,,, ΨΦU  . It is 

natural to utilize the first equation in set (1) for 

determination of the eigenvector component U
0
 as a 

function of the rest components φ
0
, ψ

0
, Φ

0
, and Ψ

0
. 

Consequently, this function reads:  

 

  CAfΨgΦhemU 00000       (9) 

 

In definition (9), 
2

31 nm   and the form of the 

parameter A depends on the form of the eigenvalue. For 

eigenvalues (3) and (4), the parameter A can respectively 

take the following forms:  
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Exploitation of definition (9) for equations’ set (1) allows 

exclusion of the eigenvector component U
0
 from the 

further consideration and to deal with a reduced set of 

four equations. This is the usual mathematical procedure 

for finding of the unknowns for the set of five equations 

in five unknowns. Let’s treat the six different cases that 

lead to different sets of the eigenvector components. It is 

convenient to use definitions (10) and (11) of the 

parameter A only in the final expressions for the 

eigenvector components in the common forms.  

 

The first case  

 

In this case, the new reduced set of four homogeneous 

equations can be written as follows:  
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Next, treating equation (12) it is possible to determine the 

second eigenvector component φ
0
 as a function of the 

components ψ
0
, Φ

0
, and Ψ

0
. It can be composed as 

follows:  
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Definition (26) for φ
0
 can be then utilized in equations 

(13), (14), and (15) to reduce the set of four homogeneous 

equations in four undetermined. As a result, the new 

reduced set of three homogeneous equations with three 

unknown components ψ
0
, Φ

0
, and Ψ

0
 can be composed as 

follows:  
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Exploiting equation (27), the third eigenvector component 

ψ
0
 represents the following function of the eigenvector 

components Φ
0
 and Ψ

0
:  
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 (30) 

 

Finally, definition (30) must be used for substitution in 

equations (28) and (29). This substitution results in the 

final two homogeneous equations in two unknowns: Φ
0
 

and Ψ
0
. With these two equations, both Φ

0
 and Ψ

0
 can be 

readily defined. These two complicated equations can be 

composed in the following forms:  
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Equations (31) and (32) represent a set of two 

homogeneous equations in two unknowns: Φ
0
 and Ψ

0
. 

This pair of equations can be schematically written as 

follows: a1x + by = 0 and bx + a2y = 0. Therefore, the 

unknowns x and y can be chosen in two different ways:  

 

(1) x = – b and y = a1;  

(2) x = a2 and y = – b.  

 

Taking into account this fact it is natural to write down 

below two different sets of the eigenvector components 

for this case. With equation (31) and definitions (9), (26), 

and (30), the first eigenvectors can be composed. For 

eigenvalues (3), m = 0 and therefore, the corresponding 

eigenvector components are relatively simple, i.e.  
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However, for eigenvalue (4) there is a more complicated 

eigenvector. For this case, the utilization of definition 

(11), equation (31), and definitions (9), (26), (30) leads to 

the following complicated eigenvector components:  
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where  

 
22

memgcM KKK      (35) 
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eemgcE KKK      (36) 
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femgcF KKK      (37) 
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gemgcG KKK      (38) 
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KKK emgcT      (39) 
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KKK emgcA      (40) 

22

KKK emgcS      (41) 

22

KKK emgcZ      (42) 
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KKK emgcB      (43) 

22

KKK emgcL      (44) 

 

To obtain the second eigenvectors, it is necessary to use 

equation (32). Therefore, two eigenvectors corresponding 

to eigenvalues (3) and (4) can be respectively inscribed as 

follows:  
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One can find that obtained eigenvectors (33), (34), (45), 

and (46) depend only on the material parameters and do 

not depend on the phase velocity Vph. All the material 

parameters are listed in table 1.  

 

The second case  

 

It is also possible to regroup equations (12), (13), (14), 

(15) and then to find new sets of the eigenvector 

components. So, the new regrouped set of four 

homogeneous equations can be written as follows:  
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 (47) 

 

Similarly, from the first equation in set (47) it can be 

written the following dependence:  
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Using definition (48) for the second, third, and fourth 

equations in set (47), one can get the following reduced 

set of three homogeneous equations:  
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It is natural to exploit the first equation in set (49) for the 

determination of the eigenvector component Φ
0
. It is 

defined by  
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A substitution of the eigenvector component Φ
0
 defined 

by (50) in the second and third equations in set (49) leads 

to the following final two homogeneous equation, with 

which it is already possible to soundly determine the rest 

two eigenvector components ψ
0
 and Ψ

0
:  
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      (51) 

Using the first of two equations in (51), the first pair of 

the eigenvectors can be composed. Therefore, they read:  
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The utilization of the second equation in (51) results in 

the second pair of the eigenvectors. They can be naturally 

written down as follows:  
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The third case  

 

For the third case, the new regrouped set of four 

homogeneous equations (47) can be introduced as 

follows:  
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  (56) 

 

Indeed, the fist equation in set (56) defines the 

eigenvector component φ
0
 as a function of the rest 

components Ψ
0
, ψ

0
, and Φ

0
. This dependence reads:  
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Using definition (57) for the standard mathematical 

procedure, the unknown φ
0
 can be excluded for the further 

treatment and therefore, one can deal already with the 

following reduced set of three homogeneous equations:  
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Analogically, the first equation in set (58) defines the 

eigenvector component Ψ
0
 by  
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  (59) 

The application of definition (59) for substitution in the 

second and third equations in set (58) can provide the 

final set of two homogeneous equations. These two 

equations can be exposed in the following form:  
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Using the first equation in set (60), the first eigenvectors 

read:  
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The second eigenvectors can be obtained by the use of the 

second equation in set (60). Their components can be 

written down as follows:  
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The fourth case  

 

In order to obtain the other possible forms of the 

eigenvectors it is possible to treat the following order of 

equations (47):  
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It is natural to exploit the first equation in set (65) to 

determine the eigenvector component ψ
0
 as a function of 

the components Φ
0
, φ

0
, and Ψ

0
. Therefore, this 

dependence can be introduced as follows:  
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A substitution of definition (66) into equations (65), but 

the first equation in set (65), leads to the homogeneous set 

of three equations in three unknowns representing the 

eigenvector components Φ
0
, φ

0
, and Ψ

0
. These three 

complicated equations are inscribed as follows:  
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Next, let’s use the first equation in set (67) for definition 

of the eigenvector component Φ
0
. Thus, it is defined by  
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Two homogeneous equations can be finally written and 

used for determination of the eigenvector components φ
0
 

and Ψ
0
. These final equations are  
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The utilization of the first of two equations (69) provides 

the following first eigenvectors:  
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The second eigenvectors for this case can be obtained by 

using the second equation in set (69). They are defined by  
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The fifth case  

 

Four homogeneous equations (47) can be also rewritten in 

the following order to get the other set of the eigenvector 

components:  
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As a result, the firs equation in set (74) can provide the 

eigenvector component ψ
0
 as the following function of the 

eigenvector components Ψ
0
, φ

0
, and Φ

0
:  
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So, equation (75) must be used for set (74) to reduce it. 

The following set of three homogeneous equations can be 

then obtained:  
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      (76) 

The first equation in set (76) defines the eigenvector 

component Ψ
0
 as follows:  
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The deployment of definition (77) for set (76) leads to the 

following two final equations, with which it is already 

possible to obtain the values of the eigenvector 

components φ
0
 and Φ

0
 in explicit forms. These two final 

equations can be formed as follows:  
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The first equation in set (78) determines the first 

eigenvectors. Their components take the following forms:  
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The second equation in set (78) is responsible for the 

existence of the second eigenvectors. Their components 

can be composed as follows:  
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The sixth case  

 

Note that equations (47) can be also rewritten in the other 

possible forms that are different from the six case treated 

below. However, this order of equations is final for this 

research. The reader can also have some practice in 

mathematics to obtain the other possible forms if they 

exist. So, one can also regroup equations (47) as follows:  
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The first equation in set (83) gives the following 

definition:  
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Definition (84) is then used in set (83) to reduce this set of 

four equations and afterward to deal with the following 

set of three homogeneous equations:  
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It is convenient to exploit the first equation in set (85) for 

determination of the eigenvector component Ψ
0
. It is 

defined by  
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In the final accord, definition (86) is used for reduction of 

equations’ set (85). The reduced set of equations 

represents two homogeneous equations that can be 

expressed in the following form:  
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Final equations’ set (87) allows one to obtain all possible 

eigenvectors. With the first equation in the set, one can 

find that the first eigenvectors can be exposed in the 

following explicit forms:  
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With the second equation in set (87), one can obtain the 

second eigenvectors. Their explicit forms can be 

demonstrated as follows:  
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The reader can find that all the obtained eigenvector 

components do not depend on the phase velocity. This is 

true for all the treated six cases. This peculiarity can be 

further used for finding the propagation velocity of the 

acoustic wave when different boundary conditions will be 

applied.  
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CONCLUSION  

 

This analysis has demonstrated that many possible 

eigenvectors can be revealed for the problem of the shear-

horizontal acoustic wave propagation coupled with the 

electrical, magnetic, gravitational, and cogravitational 

potentials. This can be explained by the fact that in this 

case, any found apt eigenvector does not depend on the 

phase velocity. This peculiarity exists in certain directions 

of the transversely isotropic (6 mm) continua. Exploitation 

of each found eigenvector can give an unique solution for 

the propagation velocity of the acoustic wave. The 

existence of some found unique acoustic waves can 

dramatically depend on one of the extremely weak 

exchange effects: the magnetoelectric, gravitocogravitic, 

gravitoelectric, cogravitoelectric, gravitomagnetic, 

cogravitomagnetic effects. This possibility must be 

analytically demonstrated in the future, using the found 

eigenvectors. The obtained analytical results can be 

readily used for finding the propagation velocities of the 

acoustic waves managed by the solid surface, common 

interface between two solids, waveguide consisting of this 

film (plate), and more complicated configurations. 

Therefore, the obtained results can stimulate constitution 

of suitable technical devices based on some gravitation 

phenomena by experimentalists and engineers working 

with the transmitting, detecting, and converting of the 

electromagnetic waves’ signals.  
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