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ABSTRACT

This theoretical report is pertinent to the mathematical problem of finding of all the possible eigenvectors for the four-
potential shear-horizontal surface acoustic wave (4P-SH-SAW) propagation in suitable solids. In this case, the wave
propagation is coupled with the four potentials, i.e. the electrical, magnetic, gravitational, and cogravitational ones. The
taking into account these four potentials results in significant difficulties to find any eigenvector because the
mathematical method is significantly complicated. To find all suitable eigenvectors is very important here because it will
allow one in the future to theoretically disclose all suitable solutions of acoustic waves. This is applicable to the problem
of finding of propagation velocities of the SH-SAWS, interfacial SH-waves, plate SH-waves, and more complicated
cases. It is thought that all the effects (for instance, the gravitocogravitic, gravitoelectric, cogravitoelectric,
gravitomagnetic, cogravitomagnetic effects) individually or collaboratively participating in the acoustic wave
propagation can be vital for acoustic wave propagation that can be readily used for constitution of suitable technical
devices. This fact must be first demonstrated theoretically for experimentalists and engineers working with the
transmitting, detecting, and converting of the electromagnetic waves’ signals. It is expected that the future
communication technologies will also exploit gravitational waves for the new communication era based on some
gravitational phenomena.

PACS: 51.40.+p, 62.65.+k, 68.35.Gy, 68.35.lv, 68.60.Bs, 74.25.Ld, 74.25.Ha, 75.20.En, 75.80.+q, 81.70.Cv, 96.20.Jz,
04.30.-w, 04.90.+¢, 95.30.Sf
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potential coupling problem.

INTRODUCTION

2016 was the jubilee year, namely the centenary
celebration of the prediction of the existence of
gravitational waves. This prediction was done by Albert
Einstein (1916). Also, 2016 is the year when Einstein’s
prediction was experimentally confirmed by a team of
more than thousand researchers (Abbott et al., 2016).
They were working during several decades since 1970s
for the purpose to detect the gravitational waves in space
experiments called the LIGO (Laser Interferometer
Gravitational-Wave Observatory). Using obtained data in
the space experiments, they presented the first direct
detection of gravitational waves and the first observation
of a binary black hole merger. The black holes are famous
invisible objects possessing very strong gravitational
fields that are strong enough to capture even the
electromagnetic waves propagating in a vacuum with the
speed of light.
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André Fizfa (2016) has reported his experimental
realization when the magnetic and gravitational forces can
interact: the magnetic field can control the gravitational
field. He has described one revolutionary approach for the
creation of gravitational fields from well-controlled
magnetic fields and observing how these magnetic fields
can bend space-time. He has proposed a theoretical device
based on superconducting electromagnets for creation of
detectable gravitational fields. He has also evaluated the
coupling between the magnetic and gravitational fields in
an order of ~ 10, This leads to the generation of
extremely weak gravitational redshift and gravitational
attraction. Also, the atomic interferometry has been
considered for the determination of the extremely faint
change in the gravitational potential produced by small
masses on matter waves. So, the amplitude of the extra
gravitational acceleration artificially generated by the
magnetic field of a single-layered solenoid is extremely
weak but lies just a few orders of magnitude below the
precision of atomic interferometry in the measurement of
differential acceleration of 10 ™ g. His pioneer work can
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release many new applications concerning
telecommunications with gravitational waves. The ability
to produce, detect, and control gravitational fields can
certainly be a major achievement in modern physics.
Therefore, scientific interest in the problem of interactions
between the gravitational and electromagnetic waves
continuously increases.

The author of this report (Zakharenko, 2016) has
developed the original theory concerning the four-
potential shear-horizontal surface acoustic wave (4P-SH-
SAW) propagation, i.e. the waves coupled with the
electrical, magnetic, gravitational, and cogravitational
potentials. This means that all five fields (elastic,
electrical, magnetic, gravitational, and cogravitational)
contribute to the wave motion. There are also interactions
among and between each pair of the mechanical,
electrical, magnetic, gravitational, and cogravitational
subsystems in the common thermodynamic system.
Theoretical work (Zakharenko, 2016) treats two extra
subsystems (gravitational and cogravitational) to the
thermodynamic system for piezoelectromagnetics (PEMS)
in which mechanical, electrical, and magnetic subsystem
contribute. The piezoelectromagnetics are a class of well-
known magnetoelectric materials. The SH-SAW
propagation coupled with the electrical and magnetic
potentials in the 6 mm PEMSs represented a great interest
in the last decade. The transversely-isotropic 6 mm
materials and suitable propagation directions (Gulyaev,
1998) for the acoustic waves are well known. There is
single review (Zakharenko, 2013a) on the PEM-SH-
SAWs and the disclosed peculiarities for the problem of
the wave propagation are discussed in (Zakharenko,
2013b). There is also single book (Zakharenko, 2010) on
some new PEM-SH-SAWSs. The book was published in
2010 under the influence of the discoveries done by
Melkumyan (2007). Some extra new PEM-SH-SAWSs
were recently discovered in (Zakharenko, 2013c) and
(Zakharenko, 2015a) and some of the new waves were
analytically studied in (Zakharenko, 2015b). It worth
noting that Melkumyan (2007) has also discovered the
new PEM-SH-SAW called the surface Bleustein-
Gulyaev-Melkumyan wave in order to have an analogy
with the surface Bleustein-Gulyaev wave. The later SH-
SAW can propagate in pure piezoelectrics or pure
piezomagnetics and was simultaneously discovered by
Bleustein (1968) and Gulyaev (1969).

The wave propagation studied in (Zakharenko, 2016) is
caused by the contribution of the following five fields: the
elastic,  electric,c,  magnetic,  gravitational, and
cogravitational. The last two fields are respectively
known as the gravitoelectric and gravitomagnetic ones in
the theory of the gravitoelectromagnetism. Paper
(Zakharenko, 2016) uses gravitational and cogravitational
instead of gravitoelectric and gravitomagnetic because the
last two words are naturally used for the corresponding

exchange effects between the gravitational and electric
(magnetic) subsystems, respectively. In this introductory
part, it is possible to briefly review some studies on the
cogravitational (gravitomagnetic) field because this field
of five can be the most infamous for the reader.

Researchers  specializing in  general relativity,
gravitational theories, and cosmology have formed the
existence necessity of a magnetic-like gravitational field
unknown in other domains of physics. Heaviside (1893)
has first hypothesized the existence of the cogravitational
(gravitomagnetic) field. This extra field predicted by
general relativity was first formulated in Thirring (1918),
Lense and Thirring (1918) and Thirring (1921). The
translation of these papers was introduced by Mashhoon
et al. (1984). Forward (1961) has first expressed the
gravitational field equations (with the gravitomagnetic
field called the prorotational field) in a vector form
directly analogous and nearly identical to Maxwell’s
equations for electromagnetism. DeWitt (1966) has first
identified the significance of gravitational effects in a
superconductor and demonstrated that a magnetic-type
gravitational field must result in the presence of fluxoid
quantization. Ross (1983) has substantially expanded
DeWitt's work.

In the early 1970s, Wallace has issued three patents
(Wallace, 1971a; Wallace, 1971b; Wallace, 1974) for
some unusual inventions relating to the gravitational field.
He has also developed an experimental apparatus for
generating and detecting a secondary gravitational field
called the kinemassic field, i.e. the gravitomagnetic field.
He has here described three different methods used for
detection of the gravitomagnetic field: (1) change in the
motion of a body on a pivot, (2) detection of a transverse
voltage in a semiconductor crystal, and (3) a change in the
specific heat of a crystal having spin-aligned nuclei. Also,
he has shown an analogy between the un-paired angular
momentum in some materials (elements and isotopes
possessing an odd number of nucleons) and the un-paired
magnetic moments of electrons in ferromagnetics.
Wallace believed that a gravitational shield can be
created: the gravitomagnetic field can create a secondary
gravitoelectric field leading to exclusion of an existing
primary background gravitoelectric field. However, these
detected gravitational shielding effects are extremely
small.

There is gravitational theoreticians’ bible (Misner et al.,
1973). This book presents gravitational field equations
derived from general relativity in a form similar to
Maxwell’s equations along with many other theories. It is
necessary to state that the Maxwell-like equations for
gravitation are relatively simple and can have possible
practical applications. Therefore, these equations must be
perfectly described in any undergraduate physics textbook
that is currently missing. Braginsky et al. (1977) have



Zakharenko

4105

written down gravitational field equations (with the
gravitomagnetic field called the magnetic-type gravity)
derived from the general relativity theory in a form
similar to Maxwell’s equations. A variety of experiments
are proposed and analyzed for detecting the
gravitomagnetic field. His further collaborative paper
(Braginsky et al., 1984) analyses an experiment for
detecting the earth's gravitomagnetic field. It is possible
that the authors of papers (Braginsky et al., 1977,
Braginsky et al., 1984) are the first who have utilized the
terms “gravitoelectric” and “gravitomagnetic”.

Bedford and Krumm (1985) have also derived the
necessary existence of the gravitomagnetic field from
arguments based on special relativity. Krumm and
Bedford (1987) have also derived the gravitational
Poynting vector and used the terms “gravinetic” and
“gravistatic” for the gravitational fields. One year later,
Kolbenstvedt (1988) has exploited the terms
“gravielectric” and “gravimagnetic” for these fields and
predicted the gravitomagnetic field existence using
special relativity and time dilation. In the following year,
Mashhoon et al. (1989) have provided a summary
analysis of Maxwell’s equations for gravitation and an in-
depth analysis of the Gravity Probe-B orbital gyroscope
experiment for detecting the earth's gravitomagnetic field.
Harris (1991) has also composed Maxwell’s equations for
gravitation from general relativity in the case of
nonrelativistic velocities and relatively weak field
strengths.

In the book published by Jefimenko (1992), the
electromagnetic field equations based on retarded sources
(charges, moving charges, and accelerating charges) were
derived and similar arguments to the gravitational field
equations were applied. He also presents Maxwell’s
equations for gravitation and an unusual mass
configuration relevant to an effect of change in gravity.
Ciufolini and Wheeler (1995) have developed the
electromagnetic analog of the gravitational field equations
and provided an in-depth analysis of experiments for
detecting the gravitomagnetic field. So, researchers
(Misner et al., 1973; Braginsky et al., 1977; Braginsky et
al., 1984; Bedford, and Krumm, 1985; Krumm and
Bedford, 1987; Kolbenstvedt, 1988; Mashhoon et al.,
1989; Harris, 1991; Jefimenko, 1992; Ciufolini and
Wheeler, 1995) have demonstrated the necessary
existence of the gravitomagnetic field, using arguments
based on general relativity, special relativity, and the
cause and effect relationship  resulting from
noninstantaneous propagation of energy (retardation).

Li and Torr (1991) have also presented Maxwell's
equations for gravitation in a form where the
gravitomagnetic permeability of a superconductor is
different from the permeability of a vacuum (free space).
They have derived an interrelationship between the

magnetic and gravitomagnetic fields in a superconductor
and established that an electrical current also results in a
mass current. It is also found that the magnetic flux in a
superconductor is a function of the gravitomagnetic
permeability, and vice versa, and shown that the
magnetically created gravitomagnetic field in a
superconductor can be ~ 10" times larger than the
internal magnetic field. One year later, Li and Torr (1992)
have discussed the interrelationship between the magnetic
and  cogravitational  (gravitomagnetic) fields in
superconductors, in which some spin alignment of the
lattice ions can cause the later field. They have also
estimated the propagation velocity of a gravitational wave
in a superconductor: it is two orders of magnitude slower
than the vacuum velocity. This allowed them to perform
an estimation of the value of relative gravitomagnetic
permeability of a superconductor: it is ~ 10,000 times
larger than that for a vacuum. In the following year, Torr
and Li (1993) have continued their analysis of
gravitational effects in superconductors and shown a
striking similarity to Wallace’s ideas that the coherent
alignment of lattice ion spins can generate detectable
gravitomagnetic and gravitoelectric fields. Li et al. (1997)
have described an experiment showing that the effect of
change in gravity was very small, if it existed at all. In
1999, Li has left the University of Alabama and found her
company AC Gravity LLC that remained listed as an
"existent" business in 2014.

Nordtvedt (1988) has reported an indirect detection of the
gravitomagnetic field by astronomical observations of the
precession rate of the binary pulsar PSR 1913+16.
Ciufolini et al. (1997) have reported that the
gravitomagnetic field resulting from the earth's rotation
was experimentally detected and measured by laser
tracking of the LAGEOS Il satellite. Their results agreed
with the Lense-Thirring derivation from the general
relativity theory. Ciufolini et al. (1998) have also reported
a test of general relativity and measurement of the Lense-
Thirring effect with two Earth satellites.

With a bulk YBa,Cus0;., superconductor, Podkletnov and
Nieminen (1992) have described a possibility of
gravitational force shielding when a 2% reduction in
weight can be achieved in a mass suspended over a
levitated and rotating toroidal-shaped type I
superconductor disk. With the Meissner effect, constant
vertical and time varying horizontal magnetic fields were
applied for rapid rotation of the disk. Podkletnov's
"gravity shielding" experiment at Tampere was replicated
by the NASA and may also be an example of the effect
described in Wallace's patents of the early 1970s claiming
that a rotating object containing unpaired nuclear spins
can modify gravity. It is a pleasure that an explanation in
terms of a gravitational analogue to the magnetic field of
electromagnetism is used.
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Using the brief review written above, the reader is already
familiar with the cogravitational (gravitomagnetic) field
and different studies on the field. Therefore, it is possible
to return to the problem of the acoustic wave propagation
coupled with the four potentials (electric, magnetic,
gravitational, and cogravitational). This theoretical report
represents a complement to the previously published work
Zakharenko (2016). Namely, it touches the very important
mathematical problem of finding of the apt eigenvectors.
To find all the possible eigenvectors is crucial because the
utilization of different eigenvectors in coupe with
different electrical, magnetic, gravitational, and
cogravitational boundary conditions can lead to different
formulas for calculation of propagation velocities of the
acoustic wave. For instance, the four-potential shear-
horizontal surface acoustic waves (4P-SH-SAWSs) are the
simplest example for the case. These 4P-SH-SAWSs
represent different mechanisms of instability of the
corresponding bulk acoustic wave, i.e. 4P-SH-BAW.
These different instability mechanisms can be caused
even by extremely small exchange effects, for instance,
the magnetoelectric, gravitocogravitic, gravitoelectric,
cogravitoelectric, gravitomagnetic, and cogravitomagnetic
effects. These effects represent an exchange between two
corresponding subsystems of four: electric, magnetic,
gravitational, and cogravitational.

This is possible that extremely weak effects can
contribute in wave existence in a major way because the
very weak magnetoelectric effect can be vital for the
some acoustic wave propagation in piezoelectromagnetics
(Zakharenko, 2010) in which the mechanical, electric, and
magnetic subsystems interact. Therefore, let’s resolve this
mathematical problem concerning the finding of all
possible eigenvectors. This represents a quite complicated
mathematical task that will be demonstrated in the
following sections.

The theory and the problem of finding of eigenvalues
and eigenvectors

For the problem of acoustic wave propagation in solids, it
is first necessary to resolve the equations of motion. This
means that all suitable eigenvalues and corresponding
eigenvectors must be disclosed. To resolve the equations
of motion is a complicated task for the common case, for
which they can be resolved only numerically. In the
common case, the coupled equations of motion are written
down in a tensor form representing the following compact
form of the well-known Green-Christoffel equation

(Zakharenko, 2016): (GLIJ —5Uprh)J
the indices | and J run from 1 to 7 and p is the mass
density. The phase velocity defined by Vph :a)/k is

P:O,WMW

proportional to the angular frequency w and inversely

proportional to the wavenumber k in the propagation
direction. GL,; stands for the components of the modified
symmetric tensor (Zakharenko, 2016) and J,; represents
the Kronecker delta-function with the following
conditions: oy =1forl=J<4,0,;=0for | £J, and d44 =
ds5 = Ogs = 077 = 0. Also, parameters U,” represent the
components of the eigenvector (uf,u;’,u;’,uf,ug,ug,u?)-
This compact tensor form of the coupled equations of
motion represents the common problem for determination
of the eigenvalues and eigenvectors.

However there are particular cases depending on the
material symmetry and propagation directions when
analytical solutions can be obtained. For the acoustic
wave propagation in the transversely isotropic (6 mm)
materials, the suitable propagation directions (Gulyaev,
1998; Dieulesaint and Royer, 1980; Auld, 1990) exist in
many directions perpendicular to the sixfold symmetry
axis. For this case, both the coupled equations of motion
and the boundary conditions’ determinant split into two
independent parts. This allows one to separately study
these two parts. The first part is for the case of the
propagation of the purely mechanical wave, for instance,
the surface Rayleigh type waves (Dieulesaint and Royer,
1980; Auld, 1990; Zakharenko, 2005). These acoustic
waves with the in-plane polarization are famous and this
work has no interest in their study. The second part is
relevant to the propagation of the shear-horizontal (SH)
acoustic wave with the anti-plane polarization. This case
represents a great interest because the SH-wave
propagation is couple with the electrical, magnetic,
gravitational, and cogravitational potentials. This case
was originally studied by Zakharenko (2016). To further
develop the study by Zakharenko (2016), it is necessary to
demonstrate all possible eigenvectors because each of
them can lead to unigue solution or the propagation
velocity of the SH-wave.

Therefore, let’s start to resolve the coupled equations of
motion written down in the following tensor form
(Zakharenko, 2016) for the case of the SH-wave
propagation in the transversely isotropic (6 mm)

materials:

C[m—(\/ph/vm)z] em hm gm fm (U°) (O
em —em —am —¢m -&m|¢°| |0
hm —am —um —pm —im|y°|=|0
gm —¢m —pm —ym -9m|d°| |0
fm -&m -am -9m —gm)\¥°) (0

1
where (Uo,q)o,t//o,qﬁo,syo) =
m=1+n?,and V,, =,/C/p.

Lo.ugug,udue),
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Table 1 lists all the material parameters present in
equations (1). The values of the material parameters must
be unique for each solid continuum. There is no necessity
in this study to write down the values of the material
parameters for a particular material. However, it is
possible to provide the well-known vacuum material
parameters listed in Table 2.

Table 1. The material parameters’ dimensions.

Material parameter Symbol Dimension
Mass density P kg/m®
Elastic stiffness constant C N/m?
Piezoelectric constant e Clm?
Piezomagnetic coefficient h T = N/(Axm)
Piezogravitic constant g kg/m?
Piezocogravitic coefficient f rad/s
Electric constant & F/m
Magnetic constant P Nxs/C?
Electromagnetic constant o Nxs/(VxC)
Gravitic constant y kg?/(Nxm?)
Cogravitic constant n m/kg
Gravitocogravitic constant 9 s/im
Gravitoelectric constant 4 Cxkg/(Ixm)
Cogravitoelectric constant ¢ m/Wh
Gravitomagnetic constant B Txkgxm/J

Cogravitomagnetic constant A Txm’/(CxWb)

Table 2. The vacuum parameters (Yavorsky et al., 2006),
where the value of the vacuum elastic constant was
borrowed from work by Kiang and Tong (2010).

Value
Co = 0.001 [N/m?]

Vacuum parameter
Elastic constant

Electric constant (dielectric
permittivity constant)

& = 0.08854187817 x 107
[F/m]

Magnetic constant (magnetic
permeability constant)

1o = 1.25663706144 x 10°
[H/m]

Gravitic constant (gravitoelectric
permittivity coefficient)

w = 1498334 x 10%
[kgxs®/m’]

Cogravitic constant
(gravitomagnetic permeability
coefficient)

o = 0.0742592 x 1072
[mrkg]

Newtonian gravitational
(gravitoelectric) constant

Gop = 1/y, = 0.667408 x 10
[m’/(kgxs’)]

Cogravitational
(gravitomagnetic) constant

Mo = 1/ = 13.46635 x 107
[kg/m]

Speed of light

CL = (GoMo)™ = (yorpo) ™
= (souo) V% = 2.997924 x 10°
[m/s]

This set (1) of five homogeneous equations allows one to
determine all the eigenvalues ns. With each of the found
eigenvalues, it is possible to obtain the corresponding

eigenvector (Uo,goo,t//o,cbo,ﬁyo). The

eigenvalues nz can be found when the determinant of the
coefficient matrix in equations (1) is equal to zero. This
determinant can be composed in the following convenient
form consisting of five cofactors:

suitable
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em - —a -¢ -
& a ¢ & @
X hm -a —u —-p -4
gm -¢ =B -r -9
fm -& -1 -9 -7

Therefore, these five factors in equation (2) give the
following five pairs of the eigenvalues:

1,2 3,4 5,6 7,8 _

nE? =4 =n9 = nl'® — ¥j ®
(9,10) _ —: vi

N1 = Fj 1V N ) )

In equations (3) and (4), j = (- 1) is the imaginary unity.
Also, expression (4) introduces the velocity (Viemgc) Of the
shear-horizontal bulk acoustic wave (SH-BAW) coupled
with the electrical, magnetic, gravitational, and
cogravitational potentials, i.e. the 4P-SH-BAW speed. It
is defined by

V,

temgc = \, C(1+ Kezmgc )/10 (5)

2

emgc defines the coefficient of the

In definition (5), K

electromagnetogravitocogravitomechanical coupling
(CEMGCMC). Its value can be calculated with the
following formula:

Z
KEZI’TI C = _1 (6)
g Z2
where

2, =\ +2B28 - Xy - iy - 9 p)

+h2(eyn + 2069~ S~ Py - )

+9%eun + 2a§/1—ﬂzg—azn—§2y)

+ 12 euy +20BC - fre—aty - Pu)

+ 2eh(Sax + B + Evi— ayn - A9 - EBY) (7)
+2eq(afn + 2L + ESu—add— Cun - EBA)

+ 2ef (apd + Cu + B2 — apI—CPA - Euy)
+2hg(eA8 + Can + E B - enf - AE - £9al)

1 2hf(689+ C2A+ Eay - ey — (9 - ECB)

+20f (eA+ a9+ Eul - eud— alh - afE)
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Z, =C(g,u—azx;/77—.92)
+C(B2E% - Euy - Bren)+ (RS2 - Foy—Cum)
+2C(yalA+naps + ePAd+ 1CES — CEBA— alAd — aES)

®)

Thus, all the possible eigenvalues, namely the five pairs
defined by expressions (3) and (4) are already obtained.
Each found eigenvalue n; must be now used in equation
(1) anew to determine the corresponding eigenvector
(UO,(DO,(//O,q)O,g/O). It is obvious that each of two

eigenvalues in each pair of five provides the same
eigenvector because equations (1) depend on ngZ Also,
four pairs (3) are identical and therefore, they must give
the same set of the eigenvector components. Fifth pair (4)
can certainly provide a unique set of the eigenvector
components different from those for eigenvalues (3). So,
only two eigenvectors must be found: the first will
correspond to each of eight eigenvalues (3) and the
second will correspond to the last pair of eigenvalues (4).
Probably, this peculiarity can significantly simplify the
problem. The second peculiarity is the situation that any
of the eigenvector components does not depend on the
phase velocity V.. The reader can check this statement by
using the final expressions for the eigenvector
components obtained in the following six sections. It is
worth noting that this second peculiarity exists only for
the transversely isotropic (6 mm) materials and results in
many possible solutions for the propagating velocity. A
great interest represents to find some solutions with a
dramatic dependence on (one of) the following extremely
weak exchange effects: the  gravitocogravitic,
gravitoelectric, cogravitoelectric, gravitomagnetic, and
cogravitomagnetic effects.

With equations (1), it is natural first to obtain common
forms of the eigenvector components. Utilizing
eigenvalue (3) or (4), these common forms will then give
certain eigenvector components (U°,¢°,(//°,q5°,¥/°). It is
natural to utilize the first equation in set (1) for
determination of the eigenvector component U° as a
function of the rest components ¢°, °, @° and ¥°.
Consequently, this function reads:

u° :—m(ego°+hx//°+gq5°+ foO)/CA ©9)

In definition (9), m:1+n§ and the form of the

parameter A depends on the form of the eigenvalue. For
eigenvalues (3) and (4), the parameter A can respectively
take the following forms:

A:m_<vph/vt4)2 :_(Vph/vm)2 (10)

A= m_(vph /Vt4)2 = _mKezmgc (1)

Exploitation of definition (9) for equations’ set (1) allows
exclusion of the eigenvector component U° from the
further consideration and to deal with a reduced set of
four equations. This is the usual mathematical procedure
for finding of the unknowns for the set of five equations
in five unknowns. Let’s treat the six different cases that
lead to different sets of the eigenvector components. It is
convenient to use definitions (10) and (11) of the
parameter A only in the final expressions for the
eigenvector components in the common forms.

The first case

In this case, the new reduced set of four homogeneous
equations can be written as follows:

e(l+mKZ /Afp° +afL+mK? /A)y° 12)
+ oL+ mK2 /AR + £l mK?2 /AN =0
all+mK2 /AR + L+ mK2 /A 13)
+ AL+ mK2 AJE® + AL+ mK2 /Ap° =0
(L mK2 /AK® + AL+ mK3 /Ay 14)
+ L mK2 /A + 9L+ mK2 /AN =0
L+ mK2 /Af® + AL+ mK2 /Al ° 15)

+ 9L+ mK2 /AR + L+ mK?2 /AJP° =0

where

K2 =e?/Ce (16)
K2 =h?/Cu (17)
K2 =eh/Ca (18)
K:=g%/Cy (19)
Kf=1f?/Cn (20)
K2=gf/C9 (21)
KZ=eg/C¢ (22)
KZ=ef /CE (23)
K?=hf/CA (24)
K, =hg/Cp (25)

Next, treating equation (12) it is possible to determine the
second eigenvector component ¢° as a function of the
components y°, @°, and ¥°. It can be composed as
follows:

o__alArmk?) o SlArmKE) o gArmKE) o (o6)
sA+mK?)”  g(armK?) T g(A+mK?)
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Definition (26) for ¢° can be then utilized in equations
(13), (14), and (15) to reduce the set of four homogeneous
equations in four undetermined. As a result, the new
reduced set of three homogeneous equations with three
unknown components °, @°, and ¥° can be composed as
follows:

[y(A+ mK2) o’(A+ ij)z] 0

A re(armk?) )

[,B(AerK;) acj(A+mK§XA+me)] . @7
+ — g
A As(A+mK?)
J{A(AJr mK?) a&(A+mK2 A+ ng?)}yo 0
A As(A+mK?)
BA+mK2) ag(A+mK?JA+mK2)) |
A Adarmk?) )
[;f(A+mK§) {2(A+mK§)2] . (28)
+ - @
A As(A+mK?Z)
+[.9(A+mK§)_§§(A+mK§XA+mK§)}yO_0
A As(A+mK?)
/1(A+ij)_a§(A+ijXA+mK§) .
A re(armk?)
. 9(A+mK§)_§§(A+mK§XA+mK§) o (29)
A As(A+mK?)

+(77(A+ mK?) (A« ng)z}Po I

A As(A+mK?)

Exploiting equation (27), the third eigenvector component
y" represents the following function of the eigenvector
components @° and ¥:

Slasmicz) al(A+mK2 A+mK?)

Voo s(A+mK?) o

2
P
A i) a&(A+mK2) A+ mK?)
~ g sArmK?)
2(p K2 2
A miy)- = AinTKE)

Finally, definition (30) must be used for substitution in
equations (28) and (29). This substitution results in the
final two homogeneous equations in two unknowns: &°
and ¥°. With these two equations, both @° and ¥° can be
readily defined. These two complicated equations can be
composed in the following forms:

plA+mK?) ag(A+mKZ)A+mKk?))
y(A+mK?) c2(A+mK?) A ,

Ag(A+mK?)
A Az(A+mK?) wlA+mK?) a?(A+mK?)
A As(A+mK?)

[3(A+mK;) §§(A+mK§XA+mK§)J ,
+ - v
A As(A+mK?)

pla+mk:) ac( A+mK XA+mK Aasmi) E(A+mK2)A+mK?)
A Ag(A+mK? o oA+ mK?) ”
A+mK?
y(A+mKZ) ﬁ)r
@31)
A+mK2 .§¢A+mK )(A+m|<2 »
As(A+mK?)
ﬂA+mK ) a§A+mK )(A+mK Apsmi: E(A+mKk2)A+mK?2)
Ac(A+mK?) o sA+mK? o
a (A+mK )

p(A+mK ) W
Aasmk?) ag(asmk?fAsmk?))’
L mlasmkd) g(aemezf A po

Ag(A+mK?)
A As(A+mK?) warmk?) a(A+mK?)
A As(A+mK?Z)

(32)

Equations (31) and (32) represent a set of two
homogeneous equations in two unknowns: @° and ¥°.
This pair of equations can be schematically written as
follows: a;x + by = 0 and bx + ay = 0. Therefore, the
unknowns x and y can be chosen in two different ways:

(D) x=-bandy=ay;
(2)x=aandy=-h.

Taking into account this fact it is natural to write down
below two different sets of the eigenvector components
for this case. With equation (31) and definitions (9), (26),
and (30), the first eigenvectors can be composed. For
eigenvalues (3), m = 0 and therefore, the corresponding
eigenvector components are relatively simple, i.e.

u°=0

(po:_gv/o_gzpo_élyo

RS L) TES) uom al & aé gz
o(1) 0(3) 0(5) o(7) [ﬂfiJ(‘gf?)f[ﬂ 7?) /A

& &

-|v | i
o(7) H
D &

g aé
e
@0 = 9-55_ ( £
&

2

o) | — @) | = 0(5)

q)O(l) (DU(Z) ¢0(5)
wow woR) o) w o)
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However, for eigenvalue (4) there is a more complicated
eigenvector. For this case, the utilization of definition
(11), equation (31), and definitions (9), (26), (30) leads to
the following complicated eigenvector components:

u° :(e(p” +hy +go° + fW°)/(CKfmgc)
oKy o Ky po K o
7R cKE(p CKE’{’
agK, K, _agK,Ky
R S A
Vo= T P - I
K _a’K, K _a’kK,
YK YK,

o KKy [ K KK, | (o adGK Y K 7K,
e | -2 J[K e&EK:W} [ ]{K mEK:mC]
@ _

e | a’K,’

Zom Hy = K
o) {ﬂKa _adK,K, J[}“K 7‘15KAKSJ
oo K EKK, Koy KeKop 0 K¢
Ko  KeKige azKAz
o o .UKM’ 5KE
(ﬂKB kK, ]
po o Ko | K A\ Kage  KeKae
Kig KeKige 4Ky 'K,
Ko oKeKoge
(34)
where
w2 2
KM - Kemgc - Km (35)
w2 2
KE - Kemgc - Ke (36)
w2 2
KF - Kemgc - Kf (37)
w2 2
KG - Kemgc - Kg (38)
w2 2
KT - Kemgc - K.9 (39)
w2 2
KA - Kemgc - Ka (40)
w2 2
KS - Kemgc - Kg (41)
k? 2
KZ - Kemgc - K{ (42)
w2 2
KB - Kemgc - K/i’ (43)
w2 2
KL - Kemgc - K/I (44)

To obtain the second eigenvectors, it is necessary to use
equation (32). Therefore, two eigenvectors corresponding
to eigenvalues (3) and (4) can be respectively inscribed as

K, aé‘:(AKz lKﬁaéKAKs
w' = azKEZ @0 — aZEZ o
1Ky, — A Ky, - A
M 6KE M R
U _alK K, Ky SRS (L adGK Y Ky EKGK,
ﬂKE 2 2 L 2 2
(00(9) Ke Kemgc d<EKemgc K Kemgc SKEKEmgc
2 2
0(9) a‘K
v Ky, = A
(DO(S) E
2
yoo [AKL 7aéKAKs}
2 2
@0 = Ke + ‘fZKsZ . Kemgc “‘KEKemgc
TUKZ, KeK?Z 2K 2
emge eKage 4Ky 'Ky
Kange  eKeKange
K alK,K, ( ag’KAKsj
— K —
po_ Ko EKK, 7(% Ko |0 Ke
Kiw KoKl P
M 5‘(5

u®=o0
0° gwo £@o_§q,o
a{g £ at &£
o e e
_at _at
H H .
G G o ]
£ &£ £ £
= az
——
€ 2
=
@° —77+éz +—‘92
& a
-
£
ad af)
_Ee %
N G d G
£ a’ (45)
T
£

U =(ep® +hy® +go° + f&I/°)/(CK§ngc)
0 ,aKiAV,“ ,ﬁ¢” ,ﬁt]/“
“/KE d<E d<E

(46)

One can find that obtained eigenvectors (33), (34), (45),

follows:

LE) TLE
(00(1) (00(3)
l//oa) _ 1/10(3)
@0(1) 450(3)
g 0) VALE)

U oo U o
(pO(s) (p0(7)
_ l/IO(S) _ 1/10(7)
@0(5) @0(7)
g 05) g 0(7)

and (46) depend only on the material parameters and do
not depend on the phase velocity Vg, All the material
parameters are listed in table 1.

The second case

It is also possible to regroup equations (12), (13), (14),
(15) and then to find new sets of the eigenvector
components. So, the new regrouped set of four
homogeneous equations can be written as follows:
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gL+ mK2/Al® + £ (L+mK2 /AP

+afl+ mK2/ARO + EfL+ mK2 /AR =0

L+ mK2/AK + L+ mK? /A)p°

+ AL+ mK2 /AR + 9L+ mKZ/AWP° =0 (47)
alt+mK? /A)® + BlL+mK? /Ap°

+ ufl+mK2 /Al ® + AL+ mK2/AW° =0

L+ mK?2 /A + 9(1+mK2 /A"

+ AL+ mK2 /AW + L+ mK2 /AJP° =0

Similarly, from the first equation in set (47) it can be
written the following dependence:

L daemk).
~ g(A+mkZ) (48)
_alA+mk?) , g(ArmK?)

s(armk?)” T e(Armk?)

Using definition (48) for the second, third, and fourth
equations in set (47), one can get the following reduced
set of three homogeneous equations:

HA+mK2) c2(A+mK2) oo BAA+mK2) ag(A+mK2 A+mK2))

A AdArmkZ) | T A Adasmk) )
+(3(A+mK;)7§§(A+mK§XA+mK§)}UO:0

A As(A+mK2)
ﬂ(A+mK§)7ag(A+mK§XA+mK§)(pu wAarmk?) a*(A+mK2) )

A Ac(A+mK?) A Ae(arme?) |”
+(,1(A+ mK?) ag(a+ meXAerK:Z)]Wo “0

A As(A+mK?)
sla+mk:) ec(ArmKZfA+mK)| o (AA+mi:) a(A+mKIA+mK?)) |

A Ag(A+mK?) A Ae(armk?) )
J{U(A+me)7§2(A+mK§) }P" —0

A Ag(A+mK?)

(49)

It is natural to exploit the first equation in set (49) for the
determination of the eigenvector component @°. It is
defined by

al(A+mK2 A+ mK?)
g(A+mK?) 0

£H(A+mK2f v
e(A+mK?2) (50)

2 2
3(A+ mKﬁ)— gg’(A:&?ﬁ%ﬁ:}ng)
— e SUO
cA(A+mK2f

}/(A+ mK;)—W

BlA+mK?)-
P° = -

y(A+mK2)-

A substitution of the eigenvector component @° defined
by (50) in the second and third equations in set (49) leads
to the following final two homogeneous equation, with
which it is already possible to soundly determine the rest
two eigenvector components y° and ¥°:

BA+mK2) ag(A+mK2fA+mK?))
,u(A+mK,f‘)7a2(A+ij)27{ A )

o As(A+mK?) ,
- A Az(A+mK?) yA+mK?) g2 (A+mk2)
A As(A+mK?)
AA+mk2) ag(armkz A+mK2))
+ - w
A As{A+mK?)
g(A+mK2 ) A+mK?2)

Bla+mk?) a{(AJrijXAerKf)Yg(AerK‘g)i e(ArmKZ -
A adaemk?) ) o2 (A+mK2y

y(A+mK§)—W

0 ={1(A+ mK?) ag(A+mK?fA+ mxg)}//o

A Ac(A+mK?Z)
g(A+mK2 A+mK?2)
_[ﬂ(A+mK;)_zzg“(AerKjXAerKg)Yg(AerKj) e(A+mK? o
A A{A+KZ) ) clarmezf

7(A+mK§)—W
S(A+mK§)7§§(A+mK§XA+mK§) ?
N n(A+mK?) £ (A+mK?) A

As(A+mK?) ,
- - v
A As(A+mK?) Aarmk?) ¢2(A+mK?)
A AfA+mK2)
(51)

Using the first of two equations in (51), the first pair of
the eigenvectors can be composed. Therefore, they read:

u’=0
(pozié(poigwoiéyo
& &
-2 g-%¢
0 as £ £
U@ (U@ (yoe) (yom) |¥ :1*7*#
(pou) ¢70(3) ¢)0(5) ¢0(7) 7—7
PO | =| 2@ | =| o | =| oD |= ﬂ7£ 3774
0 @°® OO @D 0= — 6’2 V/O _ 6‘2 o
Pow por o) o) },,i },,L
& €,
ag
0 al [ﬂ 5)
V' =—pu+—+ Iz
s
(52)
U°=(ep® +hy® + 9o + 17°)/CK2, .
¢0:7§Kz d)OiaKAWDifKS @O
‘(’KE d<E d<E
g adlK,K, SKsK,
T ez | KT
o= MK KK Kange &K e Kange Ke
UO(Q) Kezmgc ‘(’1<EKezmgc }/K _g K :
0(9) ¢ K
4 E
009) |— a K g K
v Py — KuK, K, - KsK,
@°® o= K o Ke 0
PO K K K K’
G K, G K,
2
Ay adK,K,
0_ ,LIKM aZKAZ (Kezmgc A(EKezmgc
= 7 T PR 21 2
Kemgc ‘C’KEKemgc }'KG _ é/ KZ
Kl &KeKZ

emge E " “emgc

(53)
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The utilization of the second equation in (51) results in
the second pair of the eigenvectors. They can be naturally
written down as follows:

u®=o0

(ooz_gdjo_gwo_é&yo
& £ £
[+-5)
2
UO(l) U0(3) Uo(s) Uo(?) W°:—77+é: + 22
(pom g00(3) (po(s) (p0(7) y——
&
(//0(1) _ (//0(3) — (//0(5) — (//0(7) = ad 9 &G
¢0(1) (150(3) (150(5) ¢0(7) (DO__ﬂ7 & l//0_ 7? 0
o S 0] o ¥ 74;2 y ,é:
G Gy
wo_ 4 aé £ S £
&
-
&
(54)
U’ (egp +hy? +g<1>°+f¥’°) CK g
o° :_éKz ¢0_aKAWO_§KS WO
[SKT KK J
0 _ é: K Kezmgc ‘EKEKezmgc
TR v = 2 +
0(9) Kemgc (SK Kemgc }'*:G _ g KZ
q)o(g) Kemgc &K Kemgc
= agK K
Wow) Ao = Pl HKT_L%KS -
)] @0 = Ke I/IO— E_yo
oo K, K K, SR
G K, G e
g adK, K, [3( _égéKus]
T
o AL ad K Ko  KeKiy &Ke
Kezmgc ‘C'KEKezmgc }/K _4 KZ2
G
&K

(55)
The third case

For the third case, the new regrouped set of four
homogeneous equations (47) can be introduced as
follows:

gll+mK2/A)p® + L+ mK2 /AJ°

+all+mK2/AYC + L+ mK? /A)D° =
L+ mK2 /AR® + L+ mK2 /AN

+ AL+ mK2 /Al + 8(L+mK2/Ajp° =0 (56)
all+mK2/A)® + AL+ mK2/A

+ ufl+ mK2 /AR + AL+ mK2 /AN = 0

S+ mK2 /AN + 9L+ mK2 /AP

+ AL+ mK2 /Al + {1+ mK2 /AJE° =0

Indeed, in set (56) defines the
eigenvector component ¢~ as a function of the rest
components ¥, y°, and @°. This dependence reads:

the fist equation
0

g SlArmKS)
e(A+mK?) (57)
alA+mk?) o clarmk?)
— ‘// - b
sA+rmk?)”  g(a+mK?)
Using definition (57) for the standard mathematical
procedure, the unknown ¢° can be excluded for the further

treatment and therefore, one can deal already with the
following reduced set of three homogeneous equations:

plasmk?) e2(Armkzf ) o (a(A+mK?) ag(A+mKZfA+mK?))
- e+ - v
A As(A+mK?2) A As(A+mK?2)

+[‘9(A+mK§)_§§(A+meXA+me)}pu -0

A As(A+mK?2)
MarmK?) ag(Armk2fA+mKk2)) o p(A+mK2) af(A+mk2))
[ A AdArmK?) }” { A _As(A+mK§)}V
+[ﬂ(A+me,)_ag’(A+mK:XA+mK§)}pD:O

A As(A+mK?2)
Inrmkz) eglarmZfA+mk2)) o (pA+mKE) ag(A+mKZ A+mKE)) |
[ A AdA+mK?) ]V +[ A AdA+mK?) }’/

A As(A+mK?)

(o) et

(58)
Analogically, the first equation in set (58) defines the
eigenvector component ¥° by
Aasmie)- a§(A+mK§)(A2+mK§)
WO = oA+ mK; ) W (59)
o E(ArmK?2f
n(A+me)—W
9(A+mK§)_.§§(A+mK§XA2+mK§)
B a‘iAerKe &
;7(A+m|<2)_52(/””"&?)2
(A mK2)
The application of definition (59) for substitution in the
second and third equations in set (58) can provide the
final set of two homogeneous equations. These two
equations can be exposed in the following form:

AA+mk?) ag(A+mK?fA+mK?))
uA+mK2) a?(A+mK2) ( A AfarmK?) ,
A AgArmK?) nlA+mk?) e2(a+mK?)
A As{armK?)
A+mK? A+mK?
[AAerKf ag(A+mKZ YA+ mK? \ (A+mK§)—§§( €A+,r§K§ ,)q§0
Ac(A+mKZ) 5 e(Armkzy
17(A+mK,)—W
[ﬂ A+mK?) ag(A+mK2fA+mK? )}p"—o
As(A+mK?) -
A+mK?A+mK?
AA+mK?) a§ A+mK2)A+mK?) 9(A+mK§)—% .
[ As(A+mK?) J N0 v
q(A+mK,)—W
plA+mKE) ag(A+mK2)Aa+mK2))
[ Ac{A+mK?) J/
(9(A+mK§)_§¢(A+mK§)(A+mK§)J2
Y(A+mK?2) A+mK2) A As{A+mK?) 50
Ac A+mKZ) n(A+mK?) &2 (A+mK?2)
A AsA+mK?)

(60)



Zakharenko

4113

Using the first equation in set (60), the first eigenvectors
read:

u°=o0
?° _éyo_gwo_grpo
£ &
s s
UooY) (U@ (U (yom W°=ﬂ—af %
(pom g00(3) (pO(B) (pom n- o
(//0(1) - (//0(3) - (//0(5) — (//0(7) - ﬂ' G{é 2
0| | p@ | | @ | | o . 2 [ _7]
D =—p+—+
pow | (o | | poe | | oo P &
" &
L g &
PO _ £ 40 E_po
& &
n n
& £
(61)
0 0 0 0 0 2
U :(E(,/) +hy” +9@" + ¥ )CKemgc
(00 :_ést S[/O_aKA'//O_a(Z @°
K &K K
o KK,
.
WO = Py _ agK, K, -~ AK, _ adK,K; \ &Ke
U@ Kezmgc SKEKezmgc Kezmgc ‘("KEKezmgcJ K _éZKSZ
F
0(9) &K
4 , E
Yo |= [AKL ad, K ]
@0(9) @0:7:”KM n (ZZKAZ " Kezmgc ‘gKEKeng:
WO(Q) Kezmgc 6KEKezmgc 77KF _ gszz
Kezmgc ‘C"KEKezmgc
K _HEGKs g KK
&K &K
WO 252 l//0_ 252 @°
o EKT ek
F &, F e

(62)

The second eigenvectors can be obtained by the use of the
second equation in set (60). Their components can be
written down as follows:

u°=0
?° :_éwo_gl//o_é(po
& & & .
&
2
U o(1) U 0(3) U 0(5) U 0(7) ‘//0 =—y+ i+ 22
(po(l) g00(3) (po(S) (pom n —?
l//oa) _ (//0(3) _ l//0(5) — ‘//0(7) - ﬂ—ié g_g
) O PO d°D @° :ﬂ_aié’_#
y/D(l) ¥,0(3) y/O(5) y/0(7) & n_ﬁ
&
L% 9%
wo — _ ;2 l//O _ 5‘2 @°
n-—— n-——"
& &

u° :(ega" +hy®+g@°+ fY/O) CKZ e
(po:_‘st l],o_aKAl//o_éKz @°
Ke Ke Ke ,
(BKT ) éngKz]
2 2
Uo© y'=- Ke + K, + Konge K eooe
09) Kezmgc ‘EKEKezmgc 77KF _ §2K52
wo(g) _ Kezmgc ‘(’KEKezmgc
v - 9K 7654K5Kz
B T
0 = AKg KK, | AK aéKAKS\ Ke
yIO(g) Kezmgc ‘C‘KEKezmgc Kezmgc SKEKezmgc 77K 7§2K52
F
&Ke
K, 7aé:KAKs K 7§4KSKZ
o Ke o T Ke o
- ngK td §2K 2
K, —2—5- Ke - S
e X, R X,
(64)

The fourth case

In order to obtain the other possible forms of the
eigenvectors it is possible to treat the following order of
equations (47):

pull+mK2 /Al + B+ mK2 AJp°
+all+mK2/Ak® + A1+ mK? /AW =0
BL+mK2 Al ° + {1+ mK? /AN
+C[L+mK2 Ak + 91+ mK2 /AW =0
all+mK? /Al + ¢ 1+ mK? /AN
1+mK2/AJp° 2 AP0 =
e e
+ L+ mK2 /AN + L+ mK? /AJPO =0

(65)

It is natural to exploit the first equation in set (65) to
determine the eigenvector component y° as a function of
the components @°, ¢°, and ¥°. Therefore, this
dependence can be introduced as follows:

0__IB<A+mK/23)d5o

VT A mK?)

_a(AemK?) o A(A+mKE)
ulA+mK?)

(66)

ulAvmiz)”

A substitution of definition (66) into equations (65), but
the first equation in set (65), leads to the homogeneous set
of three equations in three unknowns representing the
eigenvector components @°, ¢°, and ¥°. These three
complicated equations are inscribed as follows:
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HAa+mk?) g2 (A+mK3) o ¢(armk?) ap(a+mkZfA+mK2))
A Adaenk2) D T A T AdAemkZ) )0
s(A+mKz) paa+mk2z A+mK2))
. - w0 =0
A Au(A+mK2)
Z(a+mK?) ap(a+mK2fA+mK?) oo, [AmKE)_at(armKe) )
A Au(A+mK2) A Au(a+mk2) |
. A+mk?) ga(A+mk?2YA+mK?) o _o
A Au(A+mK2)
9(A+mK§)7ﬂZ(A+mK§XA+mK§)q)0+ farmk?) aa(a+mk2fa+mKk?)) ,
A Au(A+mK?) A Aulasmkz) )°
(dreni) SlusmcT e,
A Au(A+mK2)
(67)

Next, let’s use the first equation in set (67) for definition
of the eigenvector component @°. Thus, it is defined by

af(A+mK2fA+mK?3)
p(A+mK2) 0
BA(A+mK2
,uiA+ mK 2 ’
BA(A+mK2 N A+mK?)
p(A+mK2)
BA(A+mK2f

}/<A+ mK;)—m

Two homogeneous equations can be finally written and
used for determination of the eigenvector components ¢°
and ¥°. These final equations are

¢(A+mK2)-

P° =—

y(A+mK2)- (68)

9(A+mK2)-
TO

[{(A+mK§)7aﬂ(A+mK§XA+mK;)J2
o_| clA+mK?) a*(A+mkz) A AulA+mK?) X
A AulA+mK?) HA+mk2) g (A+mK?2)

A Au(A+mKZ)
§(A+me) al(AerKfXAerK,z) 0
+ - v
A Au(A+mK2)
BA(A+mK2)JA+mK?2)
[4(A+mK§) a,B(A+mK§XA+mK;)]3(A+mK;) yAmej ) -
A auAmk?) o Aaemkzy
y(A+ng)—m
EA+rmKk?) ga(a+ mkzfA+mK2))
0= - »
A Au(A+mK2)
BA(A+mK2)JA+mK?)
[g(AerK;) ap(A+mK2 YA+ mK?) S(a+mkj)- yAme;i ) 0
A AdAemK) N
y(A+ng)—m
[3(A+m|(§)7/M(A+me,XA+me)]2
. n(A+mk?) 2(A+mK?) A AufA+mK?) o
A AulA+mK2) Harmkz) p(asmkz)
A Ag(A+mKZ)

(69)

The utilization of the first of two equations (69) provides
the following first eigenvectors:
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(70)
U® =(ep®+hy® +ga° + f°)/CK2,,
PAKK,
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Ke - K
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@°® HKy, uKy Ky
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¢ Ky ° Ky,
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Kange 4K Kige
(71)

The second eigenvectors for this case can be obtained by
using the second equation in set (69). They are defined by

U 0(1) U 0(3) U 0(5) §] 0(7)
01 0(3 0(5, o7
7 [6H] 7 (3) 7 (5 P (7)
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The fifth case

Four homogeneous equations (47) can be also rewritten in
the following order to get the other set of the eigenvector
components:

L+ mK2 /Al ® + AL+ mK 2 /A

+all+mK?2 /Af® + AL+ mK? /Ap® =0

AL+ mK2 /A ® + L+ mk? /AR° (74)
+ L+ mK2 /AJ® + 9L+ mK2 /A =0

alt+mK2 /A + £+ mK? /AW°

+ &L+ mK2/Ap® + (L mK 2 /AJp® =0

BlL+mK2 /Al° + 91+ mK? /AP

+ (L mK2 /AR® + L+ mK2 /AJR° =0

As a result, the firs equation in set (74) can provide the
eigenvector component y° as the following function of the
eigenvector components ¥, ¢°, and @°

o AA+mK2) o ala+mK?) , AA+mKE) o (75)
L (e W ) K o)

So, equation (75) must be used for set (74) to reduce it.
The following set of three homogeneous equations can be
then obtained:
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(76)

The first equation in set (76) defines the eigenvector
component ¥ as follows:

aA(A+mK?Z ) A+mK?)
ulA+mK?) »
A (A+mK?2f (77)
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po - _
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The deployment of definition (77) for set (76) leads to the
following two final equations, with which it is already
possible to obtain the values of the eigenvector
components ¢° and @° in explicit forms. These two final
equations can be formed as follows:
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The first equation in set (78) determines the first
eigenvectors. Their components take the following forms:
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The second equation in set (78) is responsible for the
existence of the second eigenvectors. Their components
can be composed as follows:
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The sixth case

Note that equations (47) can be also rewritten in the other
possible forms that are different from the six case treated
below. However, this order of equations is final for this
research. The reader can also have some practice in

mathematics to obtain the other possible forms if they
exist. So, one can also regroup equations (47) as follows:

p(Lrmi2 /AN + 9L+ mK2 /AP

+ (L mK2 /A + Bl mK2 /Al =0

IL+mK2 /AN + L+ mK? /AN (83)
+ L+ mK2 /AJ® + AL+ mK?Z /A)° =0

Sl mK?Z /AR + £+ mK2 /AN

+ {1+ mK2/AR® +all+mK2 /A =0

BL+mK2 JAJD® + A1+ mK? /AP

+all+mK2 /Al + ull+mK2 /A =0

The first equation in set (83) gives the following
definition:
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Definition (84) is then used in set (83) to reduce this set of
four equations and afterward to deal with the following
set of three homogeneous equations:
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It is convenient to exploit the first equation in set (85) for
determination of the eigenvector component ¥°. It is
defined by
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In the final accord, definition (86) is used for reduction of
equations’ set (85). The reduced set of equations
represents two homogeneous equations that can be
expressed in the following form:
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(87)

Final equations’ set (87) allows one to obtain all possible
eigenvectors. With the first equation in the set, one can
find that the first eigenvectors can be exposed in the
following explicit forms:
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With the second equation in set (87), one can obtain the
second eigenvectors. Their explicit forms can be
demonstrated as follows:
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The reader can find that all the obtained eigenvector
components do not depend on the phase velocity. This is
true for all the treated six cases. This peculiarity can be
further used for finding the propagation velocity of the
acoustic wave when different boundary conditions will be
applied.
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CONCLUSION

This analysis has demonstrated that many possible
eigenvectors can be revealed for the problem of the shear-
horizontal acoustic wave propagation coupled with the
electrical, magnetic, gravitational, and cogravitational
potentials. This can be explained by the fact that in this
case, any found apt eigenvector does not depend on the
phase velocity. This peculiarity exists in certain directions
of the transversely isotropic (6 mm) continua. Exploitation
of each found eigenvector can give an unique solution for
the propagation velocity of the acoustic wave. The
existence of some found unique acoustic waves can
dramatically depend on one of the extremely weak
exchange effects: the magnetoelectric, gravitocogravitic,
gravitoelectric, cogravitoelectric, gravitomagnetic,
cogravitomagnetic effects. This possibility must be
analytically demonstrated in the future, using the found
eigenvectors. The obtained analytical results can be
readily used for finding the propagation velocities of the
acoustic waves managed by the solid surface, common
interface between two solids, waveguide consisting of this
film (plate), and more complicated configurations.
Therefore, the obtained results can stimulate constitution
of suitable technical devices based on some gravitation
phenomena by experimentalists and engineers working
with the transmitting, detecting, and converting of the
electromagnetic waves’ signals.
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